ROLL BENDING DIGEST

Information for:

- 3 Roll Pyramid
- 3 Roll Initial Pinch
- 3 Roll Pinch Pyramid
- Four Roll Double Initial Pinch

Includes
- Procedures
- Trouble Shooting
- Rules of Thumb
- Nomenclature
- Features

Price: $15.00

1st Edition
Complied By A. Weaver
SHEET & PLATE ROLL BENDING DIGEST

FOR: Operators Managers Designers Engineers

Compiled by: A. Weaver

1821 Matherly Road • Liberty- KY 42539
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Roll Nomenclature</td>
</tr>
<tr>
<td>2.1</td>
<td>Pyramid Type features, nomenclature, & forming cycle</td>
</tr>
<tr>
<td>3.1</td>
<td>Initial Pinch features, nomenclature, & forming cycle</td>
</tr>
<tr>
<td>4.1</td>
<td>Pinch Pyramid features, nomenclature, & forming cycle</td>
</tr>
<tr>
<td>5.1</td>
<td>Four Roll features, nomenclature, & forming cycle</td>
</tr>
<tr>
<td>6.1</td>
<td>Work Piece Quality</td>
</tr>
<tr>
<td>7.1</td>
<td>Cone Rolling Procedure</td>
</tr>
<tr>
<td>8.1</td>
<td>Rules to Roll By</td>
</tr>
<tr>
<td>9.1</td>
<td>Machine Features to Consider</td>
</tr>
</tbody>
</table>
ROLL NOMENCLATURE

- Roll Position Indicators
- Electrical Panel
- Main Housing
 - Longitudinal Grooves
 - Starting/Squaring
- Circular Grooves
- Drop End
- Drop End Cylinder
- Drop End Housing
- Trim Valves
- Optional Roving Pendant Control
- Emergency Safety Cable Switch
- Safety Cable Switch
- Manual Control Levers
PYRAMID TYPE

ADVANTAGES
Economical
High capacity for given roll size
Uniform rolling
Ability to roll angle and flat bar with attachments
Good cone rolling

DISADVANTAGES
Leaves a relatively long flat on leading and trailing edges
ROLL NOMENCLATURE

PYRAMID & PINCH PYRAMID

Circular Grooves

Top Roll

FAR ROLL

NEAR ROLL

Squaring / Starting Groove
ROLLING CYCLE
PYRAMID ROLL

Top roll adjusted down to obtain proper radius.

Starting groove

Lower Roll Lower Roll

Work piece is entered into roll against starting groove.

Rolls are rotated to feed work piece through.
ROLLING CYCLE
PYRAMID ROLL
continued

L = length of flat

Rolled to completion.
INITIAL PINCH

ADVANTAGES
Rolls minimal flats (approximately 1 1/2 to 2 x metal thickness) on leading and trailing edges
Good cone rolling capabilities
Good control of work piece

DISADVANTAGES
For proper formation work piece must be removed and re-entered in the opposite side of machine
Small opening between pinch and top rolls
ROLLING CYCLE
INITIAL PINCH ROLL

1. Work piece is entered from rear side of machine into starting groove in pinch roll.

2. Rolls are rotated and work piece is rolled through 4 to 10 inches.

3. Rolls are reversed and pre-bent work piece is removed.

4. Work piece is re-entered and bending roll is adjusted upward to final forming position.

5. Rolled to completion.

ADVANTAGES
Minimal flats on both ends with one entry
Easy to operate
Increased capacity when rolling large diameters
Ability to roll angles and flat bar with attachments
Very versatile - symmetrical structural sections and welded/fabricated panels can be formed

DISADVANTAGES
Moderate accuracy
Moderate cone rolling capability and capacity
Can have some flats on large diameters
Can lose control of work piece
ROLL NOMENCLATURE

PYRAMID & PINCH PYRAMID

- Circular Grooves
- Top Roll
- Far Roll
- Near Roll
- Squaring / Starting Groove

4.2
ROLLING CYCLE
PINCH PYRAMID ROLL

1. Work piece is entered into machine. Far roll is raised to pinch material.

2. Work piece is rolled to near completion.

3. Far roll is lowered. Near roll is raised to pinch material.

4. Rolled to completion.

Larger diameters > 4 to 6 x Top roll diameter
2 to 6 x T

Smaller diameters 3/4 to 6 x Top roll diameter
1/2 to 2 x T
ADVANTAGES
Minimal flats (approximately 1 to 2 x metal thickness) on both ends with one entry
Can be conveyor fed
Excellent control of work piece
Excellent cone rolling capacities
Readily lends itself to automation

DISADVANTAGES
Larger machine
More costly
Can be confusing for the periodic and unskilled worker
ROLL NOMENCLATURE

FOUR ROLL DOUBLE PINCH

- Far Bending Roll
- Top Roll
- Near Bending Roll
- Pinch Roll

Starting / Squaring Groove
ROLLING CYCLE
FOUR ROLL PLATE

1. Work piece is entered and squared against far roll.

2. Pinch roll is raised to clamp work piece. Far roll is lowered.

3. Rolls are reversed until leading edge is just short of the center line of the top and pinch rolls.

4. Near roll is raised to bending position.
5. Rolls are rotated forward until prebend is complete.

6. Near roll is lowered. Far roll is raised to forming position.

7. Rolled to completion.

8. Completed cylinder.
WORK
PIECE
QUALITY

- WHAT AFFECTS IT
- HOW TO CORRECT IT
FACTORS CONTRIBUTING TO WORK PIECE QUALITY

--Variations in metal thickness
--Variation in temper
--Variation in physical characteristics of different heat numbers
--Grain direction
--Uniform cross section of work piece
WORK PIECE QUALITY

ROLL CROWN

Problem: Hourglass shaped work piece.

Reason: "C" (roll crown) too much for this size work piece.

Remedy: Roll cardboard or sheet metal shims along with work piece to affect over crowning.
Problem: Barrel shaped work piece.

Reason: "G" (roll crown) too small for this work piece.

Remedy: Roll cardboard or sheet metal shim along with work piece to off set under crowning.

WARNING!!
Do not exceed machine capacity!
Problem: Bell mouthed shaped work piece.

Reason: Pinch Roll pressure too tight. (cold working work piece edges)

Remedy: Lower pinch roll so that opening at end of roll is equal to or greater than T (work piece thickness)
Problem: Flats on leading and trailing edges.

Reason: Rolling transverse or perpendicular to grain.

Remedy: Roll in direction of grain.
Problem: Oround work piece.

Reason: Unequal cross sections were rolled with one radius setting.

Remedy:

Roll with two radius settings.

Create an equal cross section by connecting parts with tabs.
WORK PIECE QUALITY
WORK PIECES WITH CUT OUTS

Problem: Orounded cylinder.

Rolling direction

Reason: Unequal cross section.

Remedy: Create equal cross sections by connecting drop to work piece with tabs.
Problem: Skewed or unequally rolled cylinder.

Reason: Work piece entered unsquare or rolls out of parallel.

Remedy: Align rolls. Enter work piece squarely and in center of rolls.
WORK PIECE QUALITY

Problem: Work piece unbends under its own weight.

Reason: Material strength insufficient to support its own weight.

Remedy: Provide support for work piece as it exits the forming roll.
Problem: Work piece collapses under its own weight.

Reason: Material strength insufficient to support its own weight.

Remedy: Provide overhead support for work piece as it comes around overhead.
CONE ROLLING PROCEDURES
1. Angle Pinch Roll to grip long end of work piece.

2. Angle Bending Roll to form small end of work piece to a tighter radius.

3. Enter work piece with small end of cone blank against cone snubber.

4. Raise Bending Roll to set radius.

5. Feed work piece through to obtain approximately half of bending required.

6. Raise Bending Roll for final pass & reverse to complete bend.
1. Angle Top Roll (on Pyramid) or both lower rolls (on Pinch Pyramid) to form small end of work piece.

2. Enter work piece with small end of cone against cone snubber.

3. Raise lower rolls (Pinch Pyramid) or lower top roll (Pyramid) to obtain about half of radius required.

4. Roll piece through.

5. Adjust rolls for final radius.

6. Roll reverse for completion.
CONE QUALITY

Problem: Skewed ends.

Reason: Work piece formed in one rolling direction.

Remedy: Roll partially in one direction and complete rolling in opposite direction.
RULES
TO
ROLL
BY
Some Rules of Thumb

Minimum Rolling Diameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrought Iron / 1010 Mild Steel</td>
<td>1.1 x Top Roll Diameter</td>
</tr>
<tr>
<td>Mild Steel, i.e. M-1020</td>
<td>1.2 x Top Roll Diameter</td>
</tr>
<tr>
<td>Cold Rolled Sheet or Thin</td>
<td></td>
</tr>
<tr>
<td>Galvanized Sheet, i.e. 20-28 ga.</td>
<td>1.5 x Top Roll Diameter</td>
</tr>
<tr>
<td>Soft Aluminum</td>
<td>1.1 x Top Roll Diameter</td>
</tr>
<tr>
<td>Tempered aluminum, i.e. 6061T6</td>
<td>2 x Top Roll Diameter</td>
</tr>
<tr>
<td>Soft Copper</td>
<td>1.1 x Top Roll Diameter</td>
</tr>
<tr>
<td>Half Hard Copper</td>
<td>1.5 x Top Roll Diameter</td>
</tr>
<tr>
<td>Stainless Steel, Monel, Etc.</td>
<td>1.2 to 1.4 x Top Roll Dia.</td>
</tr>
<tr>
<td>A.R. Plate, T-1, Other Super Alloys</td>
<td>2 or more x Top Roll Dia.</td>
</tr>
</tbody>
</table>
BENDING CAPACITIES

* When bending steel of double thickness, approximately 5.2 times the forming pressure is required when the rolls are of the same diameter and spacing.

* With the same thickness and yield strength of material, bending pressure is reduced to 0.39 when roll spacing is doubled.

* When yield strength of same thickness material increases, forming pressure increases on a direct 1 to 1 ratio.

* When calculating cylinder blank length, multiply 0.8 x metal thickness, add the inside diameter, multiply x π.
Tips

- For best quality cylinders- always push work piece against (Do not pull across) the Bending Roll when ever possible.

- For best quality cylinders support work piece uniformly before- during and after forming cycle.

- It is always easier to open up (increase diameter) of finished work piece a bit than to close it (pull together)- in fact in most cases the work pieces opens up a bit by the normal handling between work stations. (stress relieves)

 Meaning: It is generally better to roll a bit tight (small) than too loose. (Large)

- On four roll machines use only 3 rolls at a time for best work piece quality.

- Orient work piece on raw material so the work piece is rolled with the grain. (not across grain)

- When large cutouts are cut into work pieces prior to forming- tab leading and trailing edge. (not sides)
Machine Features to Consider

- Manual lever type control valves can have better control characteristics.
- Analog type mechanical indicators generally are sufficiently accurate and more economical.
- Controls with presets can be very advantageous for large volumes of identical parts.
- Hardened rolls should be seriously considered when rolling:
 * Flame- Plasma or Laser Cut Parts
 * Stainless Steel
 * Abrasion Resistant Steels
 * High Strength Steels
 * Super Alloys
 * When cone rolling any material
- Hardened and polished rolls should be considered whenever rolling material with polished or fine finished surface.
- Side and overhead support should be considered when large diameter- light gauge work pieces are formed.
- In general a little automation in rolling machines increases productively substantially. (Resist the inclination to over automate)
- Seriously evaluate your part families and have rolls crowned for your largest volume parts. (If this is not known then roll should probably be crowned for 2/3 capacity)